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Modelling Volcanic Processes

Why and when did we start modelling volcanic processes?

How is modelling of volcanic processes helping understand
S the volcanic system?

What is the relationship between volcano modelling and the
natural system?

Why do we still need volcano modelling? Who needs it?

Where do we go from here?
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MOTI VATION

Volcanic system = range of scales, material property variations, and
complex interacting physical and chemical processes

_
.

particle transport ' eruptive plumes and
and dispersal of — their interaction with
ultrafine aerosols = the atmosphere

PDCs and their
Interaction with
topography

imultiphase high-speed
| flows in conduits

ewrfofviscous magma through
fractures In the deformable crust

magma chambers
deep in the crust
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MOTIVATION

Volcanologists have the drive and the responsibility to progress their
science to improve understanding and mitigation of the effects of
volcanic eruptions
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Hazardous processes are required to
be analytically and numerically
described for both real-time
forecasting and long-term risk

' reduction strategies

Many key volcanic processes
cannot be observed and
analysed directly

A variety of dedicated models of different complexity needed to be developed
at multiple scales that could address different purposes
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DEVELOPMENT OF VOLCANOLOGY SPURRED BY CRISES AND CATASTROPHES

_ “The world quickly learned that the impacts of large geophysical
Vesuvius events are global, and that they demonstrate the inter-dependence
of land, sea, and air” Simkin and Fiske 1984

Verbeek (1885)

Letters of Pliny the Younger Zollinger (1855)
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DEVELOPMENT OF VOLCANOLOGY SPURRED BY CRISES AND CATASTROPHES

_ “The world quickly learned that the impacts of large geophysical
Vesuvius events are global, and that they demonstrate the inter-dependence
of land, sea, and air” Simkin and Fiske 1984
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DEVELOPMENT OF VOLCANOLOGY SPURRED BY CRISES AND CATASTROPHES
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FIRST GENERATION OF VOLCANO MODELLING

1970-1990: analytical, 1-2D, homogeneous and steady models

— to explain and understand fundamental volcanic processes (e.g. magma chambers,
plumes, tephra fallout, column collapse, lava flows)

— based on a combination of observations, experiments, theoretical models
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SECOND GENERATION OF VOLCANO MODELLING (> 1990)

»~ N

- Further development of volcano models
b d di o - Development of
for a better understanding of volcanic hazard models for both

processes long-term hazard

‘.’ ‘.’ assessment and real-

-> Further -> Development of time forecasting

development of 3D models
1-2D models
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Prevailing Wind
——

Eruption Cloud

Tephra (Ash) Fall

Bombs
Lava Dome

Lava Dome Collapse

Lava Flow

Lahar (Mud or Debris Flow)

Eruption Column

Pyroclastic
Density
Current

Fumaroles

SOURCE: USGS

WHY & WHO

surficial
processes

y magma chamber

WHERE

PHYSICAL
UNDERSTANDING
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Magma chamber
Dynamics of magma chambers

<1990 - crystal settling, intrusion of hot and dense magma, magma mixing,
convection, large-scale cyclic layering

>1990 - crystal-rich mushes, zoning in magma chambers, magma mixing and
compositional heterogeneities

Triggering mechanisms of volcanic eruptions

- elastic model (magma input; volatile oversaturation), visco-elastic model
(accumulation of overpressure; large-caldera forming eruptions), chaotic mixing
(mixing to eruption time)
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® Gas

e Gas migration
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SOURCE: Caricchi and Blondy 2015
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Magma chamber
Dynamics of magma chambers

<1990 - crystal settling, intrusion of hot and dense magma, magma mixing,
convection, large-scale cyclic layering

>1990 - crystal-rich mushes, zoning in magma chambers, magma mixing and
compositional heterogeneities

Triggering mechanisms of volcanic eruptions

- elastic model (magma input; volatile oversaturation), visco-elastic model
(accumulation of overpressure; large-caldera forming eruptions), chaotic mixing
(mixing to eruption time)

M tpe phasas
ascent

Numerical simulations and geophysical
v v observations

o | Prokonged geoptysical
Ui e . ¢ Magmatic volatile phase - relationship

JM, Shallow 1 mis

s e between eruption potential and excess sulfur

- - * Deformation - decrease of shallow system
pressure associated with magma rise

* Seismic signals - relationship with mingling,
magma rise and water accumulation

-084

Watar contart n P mat phaso

SOURCE: Petrelli et al. 2018
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Volcanic conduit

Conduit models are particularly challenging

due to:

» transition to various phase regimes and lack
of similarities with other fields

» coexistence of several interdependent,
poorly-understood physical processes, which
act at different temporal and spatial scales

OUTGASSING

COALESCENCE
EFFUSIVE

E §é g (e.g. crystallization occurs at a microscale,
§‘§ but affects the macroscale dynamics through
“A viscosity)
=
: - Dynamics of magma ascent
<1995
- isothermal, 1D, steady, homogeneous models
>1995

— 1.5-2D multiphase/non-homogeneous transient models

- effect of magma composition, temperature variation, complex
geometry and wall-rock interaction on magma rise

— coupling of different domains in 1D models

SOURCE: Costa et al. 2007
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Plume dynamics and tephra fallout
. ' <1990:

Ve . 1-2D steady, homogeneous models
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Plume dynamics and tephra fallout

" >1990:
Mo 1-2D steady, homogeneous models
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Plume dynamics and tephra fallout
>1990:

1-2D steady, homogeneous models
— Superbuoyancy

Effect of Reynolds number on particle fallout

Gravity-current spreading

Effect of wind on plume rise

Column collapse steady state

SOURCE: Dobran at al. 1993

Particle aggregation in plume models

Ll

Water phase transition

2D transient multiphase flow models

— Transition from mean values of properties along
the plume axis to a horizontal spatial distribution

SOURCE: Clarke et al. 2002

SOURCE: Neri and Dobran 1994
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Plume dynamics and tephra fallout
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>1990:
3D transient multiphase flow models
— wind shear on plume dispersal

— effect of topography on flow inundation

— more accurate description of the multiparticle
nature of the pyroclastic mixture

B A W e =

Calbuco 10 kmn 20 km

SOURCE: Cerminara et al. 2016
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HAZARD
ASSESSMENT

— Eruption Column

Eruption Cloud
surficial

processes 1

FORECASTING

Tephra (Ash) Fall

Pyroclastic
Density
Current

/3 mles
N \“

Lava Dome

Lava Dome Collapse

PREDICTION

Lava Flow

Lahar (Mud or Debris Flow)

N

SOURCE: USGS

J magma chamber
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‘ S~ HAZARD
md e ASSESSMENT

<1990: hazard maps reflected areas
that had been affected by past events

Probability map of PDC inundation combined with
probability of vent location opening at Campi
Flegrei (weighted by expert elicitation); modified

Nt 3 u momes from Bevilacqua (2016) and Neri et al. (2015)

Hazard Zonation Map Nevado del Ruiz; Tilling 1989 me.

>1990: Analytical and numerical =
description of... ——
Gas dispersion

Ballistics

Lava flows

PDCs and lahars

Tephra fallout and dispersal
Ash resuspension

>2000:
Probabilistic hazard assessment
Real-time forecasting

0%
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RELATIONSHIP BETWEEN NATURAL SYSTEM AND VOLCANO MODELLING

Model “validation” (=testing), calibration and integration
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RELATIONSHIP BETWEEN NATURAL SYSTEM AND VOLCANO MODELLING

Inversion of observation data

—> inverting deformation data to characterize magma supply rate (Aira caldera, Japan)
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RELATIONSHIP BETWEEN NATURAL SYSTEM AND VOLCANO MODELLING

Inversion of observation data

—> inverting for volcanic SO, flux based on satellite imagery and chemistry-transport
model (CHIMERE) (Eyjafjallajokull 2010)
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RELATIONSHIP BETWEEN NATURAL SYSTEM AND VOLCANO MODELLING

Inversion of observation data

—> inverting for erupted mass and plume
height based on deposit observations and

advection-diffusion model (TEPHRA2)
(Pululagua 2450BP, Ecuador)
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RELATIONSHIP BETWEEN NATURAL SYSTEM AND VOLCANO MODELLING

ManE i o Eruption parameters
(for each grainsize) [T T EPHRAZ (erupted mass &

Inversion of observation data

—> inverting for erupted mass and plume
height based on deposit observations and
advection-diffusion model (TEPHRA2)
(Pululagua 2450BP, Ecuador)
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RELATIONSHIP BETWEEN NATURAL SYSTEM AND VOLCANO MODELLING

Data assimilation

(D) EnKF
SOURCE: Osores et al. 2019 Analysis
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CURRENT NEEDS IN VOLCANO MODELLING

Risk reduction

— real-time forecasting

No Fly Zone > 4mg/m?3
Time-Limited Zone 2-4 mg/m3
Enhanced Procedures 0.2-2 mg/m3

Treatment of uncertainties: ESPs, modelling,
hazardous concentrations

Modelled Ash Concentration From FL350 to FL550
e Valid 1800 UTC 14/06/2019 to 0000 UTC 15/06/2019
Ice

This is a guidance product, supplemental to the official VAAC London Volcanic Ash Advisary and Volcanic Ash Graphic products
Issue Time: 201906141200

EXERCISE EXERCISE EXERCISE
200-2000 micrograms per cubic metre 2000-4000 microgeams per cupic metre I >4090 micrograms per cubic merer

Al concentrations are subject to a level of uncertainty relative to errors in the estimation of the eruption strength

© Met Office Crown Copyright
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WHY & WHEN HOW

CURRENT NEEDS IN VOLCANO MODELLING

Risk reduction
— long-term hazard/risk assessment: probability maps of...
Lahars Lava flows Tephra load (1 kg/m?)

Yunohama harbour
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CURRENT NEEDS IN VOLCANO MODELLING

Risk reduction

— long-term hazard/risk assessment: probability maps of...
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CURRENT NEEDS IN VOLCANO MODELLING

Emergency preparedness

—> evacuation analysis
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CURRENT NEEDS IN VOLCANO MODELLING

Advance our understanding of the volcanic system

o
b1
E
=
E
=
o
o

When will a volcano erupt?

plume base (P=Pztm) y
— adiabatic
i decompression

conduit top (Mach=1)

How much magma will be erupted?

...with which style and consequences?
fragmentation level

How long will the eruption last?

Which geophysical and geochemical
precursors do we need to focus on to
predict time and duration of an eruption?

eA’SO/L/(/Dn /eve/

— coupling the modelling of subsurface chamber-conduit interface
and subaerial processes for short term

predictions and assessment of eruption
evolution b

Champe,
Mode)

e.g. Colucci et al. 2014,
Koyaguchi and Suzuki 2018
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COMPONENTS REQUIRED TO ADVANCE IN OUR UNDERSTANDING OF THE
VOLCANIC SYSTEM AND IN THE MITIGATION OF THE ASSOCIATED EFFECTS
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Calculations per second
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and multidisciplinary
treatment of data
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Processing power for computers
doubles every two years

Numerical model resolution does not
increase linearly with computer power

Improve resolution and scale of the
physical process (—integrating small-scale
processes into large-scale dynamics)

Development of more
accurate constitutive eq.
of volcanic mixture
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FUTURE PERSPECTIVES: CHALLENGES AND OPPORTUNITIES

Rapid evolution of technology and computational fluid dynamics

— use of 3D models and Al also in hazard-assessment applications

— need of collaboration on existing models in order to advance our understanding as a
community (=“discovering truth by building on previous discoveries”)

—> use of open source to promote exchange, optimize advancement and replicate results
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FUTURE PERSPECTIVES: CHALLENGES AND OPPORTUNITIES

Rapid evolution of technology and computational fluid dynamics

Application of improved technology
—> maintain a strong relationship with the natural system to formulate the right questions

— need for systematic benchmarking and model intercomparison (Sahagian 2005;
Bonadonna et al. 2011; Cordonnier et al. 2016; Costa et al. 2016; Suzuki et al. 2016;
Dietterich et al. 2017)

— implementation of scientific innovation into operations

— application of innovation: capacity vs resources (models may not need to be complex to
capture the most important processes, although calibration and testing is required)




FUTURE PERSPECTIVES: CHALLENGES AND OPPORTUNITIES

Rapid evolution of technology and computational fluid dynamics

Application of improved technology

Need of implementation of systematic ground and space-borne monitoring for
active volcanoes with different characteristics (both for scientific and risk-
reduction perspectives)




FUTURE PERSPECTIVES: CHALLENGES AND OPPORTUNITIES

Rapid evolution of technology and computational fluid dynamics

Application of improved technology

Need of implementation of systematic ground and space-borne monitoring for
active volcanoes with different characteristics

Epistemic and aleatoric uncertainties in the physical and numerical description of
the natural system

— need to better characterize (ensemble; PDFs) and communicate uncertainties




FUTURE PERSPECTIVES: CHALLENGES AND OPPORTUNITIES

Rapid evolution of technology and computational fluid dynamics

Application of improved technology

Need of implementation of systematic ground and space-borne monitoring for
active volcanoes with different characteristics

Epistemic and aleatoric uncertainties in the physical and numerical description of
the natural system

Opportunity and need of multidisciplinary studies (from f Y )
subsurface to space) for a better understanding of the
volcanic system (unrest and eruption onset, size, style | ﬁ 2 . '} )

and duration) > 1
—> take advantage of advancements in geophysical %?7

observations and technology for a stronger coupling
modelling-observations (e.g. data assimilation and inversion) ‘9 —



IAVCEI COMMISSIONS — PROMOTE MULTIDISCIPLINARY
COLLABORATIONS AND ADVANCE AS A COMMUNITY
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